Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults
نویسندگان
چکیده
An independent association exists between sleep apnea and diabetes. Animal models suggest exposure to intermittent hypoxia, a consequence of sleep apnea, results in altered glucose metabolism and fasting hyperglycemia. However, it is unknown if acute exposure to intermittent hypoxia increases glucose concentrations in nondiabetic humans. We hypothesized plasma glucose would be increased from baseline following 3 h of intermittent hypoxia in healthy humans independent of any effect on insulin sensitivity. Eight (7M/1F, 21-34 years) healthy subjects completed two study visits randomized to 3 h of intermittent hypoxia or continuous normoxia, followed by an oral glucose tolerance test. Intermittent hypoxia consisted of 25 hypoxic events per hour where oxygen saturation (SpO2) was significantly reduced (Normoxia: 97 ± 1%, Hypoxia: 90 ± 2%, P < 0.01). Venous plasma glucose concentrations were measured on both visits before and after the 3 h protocol. No changes in plasma glucose were observed from baseline after 3 h of continuous normoxia (5.1 ± 0.2 vs. 5.1 ± 0.1 mmol/L, P > 0.05). In contrast, circulating glucose concentrations were increased after 3 h of intermittent hypoxia when compared to baseline (5.0 ± 0.2 vs. 5.3 ± 0.2 mmol/L, P = 0.01). There were no detectable changes in insulin sensitivity following intermittent hypoxia when compared to continuous normoxia, as assessed by the oral glucose tolerance test (P > 0.05). Circulating glucose is increased after 3 h of intermittent hypoxia in healthy humans, independent of any lasting changes in insulin sensitivity. These novel findings could explain, in part, the high prevalence of diabetes in patients with sleep apnea and warrant future studies to identify underlying mechanisms.
منابع مشابه
Fructose ingestion acutely stimulates circulating FGF21 levels in humans
OBJECTIVE Fibroblast growth factor 21 (FGF21) is a hormone with pleiotropic metabolic activities which, in rodents, is robustly regulated by fasting and ketogenic diets. In contrast, similar dietary interventions have either no or minimal effects on circulating FGF21 in humans. Moreover, no intervention or dietary challenge has been shown to acutely stimulate circulating FGF21 in either humans ...
متن کاملComparing the Effect of Continuous and Intermittent Exercise Training Regimens on soleus GLUT4, AMPK and Insulin Receptor in Streptozotocin-Induced Diabetic Rats
Background: The impact of continuous and intermittent training on diabetes mellitus condition and its mechanism is not well understood. The aim of the present study was to assess the changes in glucose uptake after 6 weeks of continuous and intermittent exercise training protocols in healthy and streptozotocin (STZ)-induced diabetic rats. Method: Sixty male al...
متن کاملTRANSLATIONAL PHYSIOLOGY Metabolic effects of intermittent hypoxia in mice: steady versus high-frequency applied hypoxia daily during the rest period
Carreras A, Kayali F, Zhang J, Hirotsu C, Wang Y, Gozal D. Metabolic effects of intermittent hypoxia in mice: steady versus high-frequency applied hypoxia daily during the rest period. Am J Physiol Regul Integr Comp Physiol 303: R700–R709, 2012. First published August 15, 2012; doi:10.1152/ajpregu.00258.2012.—Intermittent hypoxia (IH) is a frequent occurrence in sleep and respiratory disorders....
متن کاملMelatonin prevents hyperglycemia in a model of sleep apnea.
OBJECTIVE Obstructive sleep apnea is a common disorder associated with aging and obesity. Apneas cause repeated arousals, intermittent hypoxia, and oxidative stress. Changes in glucolipidic profile occur in apnea patients, independently of obesity. Animal models of sleep apnea induce hyperglycemia. This study aims to evaluate the effect of the antioxidants melatonin and N-acetylcysteine on gluc...
متن کاملMetabolic effects of intermittent hypoxia in mice: steady versus high-frequency applied hypoxia daily during the rest period.
Intermittent hypoxia (IH) is a frequent occurrence in sleep and respiratory disorders. Both human and murine studies show that IH may be implicated in metabolic dysfunction. Although the effects of nocturnal low-frequency intermittent hypoxia (IH(L)) have not been extensively examined, it would appear that IH(L) and high-frequency intermittent hypoxia (IH(H)) may elicit distinct metabolic adapt...
متن کامل